
International Journal of Engineering, Technology and Natural Sciences
E-ISSN: 2685-3191 | P-ISSN: 2775-7706

Vol 3 No 1 (2021)

33

Designing Query Optimization for Scheduling the Lecture

Across Faculties and Study Programs

Joko Aryanto *, a,1, Ahmad Tri Hidayat b,2
a,b Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia

1 joko.aryanto@uty.ac.id, 2 ahmad.tri.h@uty.ac.id*

Abstract

University Course Timetabling Problem (UCTP) is a combinatorial optimization with a high complexity model.

UCTP optimization aims at producing an optimal arrangement of lecture schedules by eliminating problems

during the lectures and minimizing violations of the constraints. Previous studies apply UCTP problems with fixed

or static scheduling time slots to handle the lecture time of each lecture session. However, not all universities use

a static scheduling model to collect research data. This study aims to design an optimization model to solve UCTP

with dynamic scheduling slots. Data were collected from all existing study programs at the University of

Technology Yogyakarta. Data consisted of (1) the distribution of theoretical classrooms data, (2) the distribution

of practicum classrooms data, (3) the distribution of credit load and course time slots data, (4) the distribution of

lecturers' teaching schedules data, (5) the distribution of odd and even courses data, (6) the distribution of sessions

on each lesson data. The software architecture, including database design, system workflow, and interface design,

was conducted after collecting and analyzing data. The results of this study are expected to produce an appropriate

lecture schedule to use utilizing Query Language optimization to implement the Spread Insertion Algorithm.

Keywords: Query Optimization, component, formatting, styling

I. INTRODUCTION

The preparation of the lecture schedule in the

learning-teaching process is a tangible thing in an

educational institution. To produce effective learning-

teaching activities, the processing of the lecture

schedule must be arranged as well as possible.

Preparing the lecture schedule at the university level,

which has several faculties and many study programs,

is not easy. The university applies a system of using

space and resources for all study programs and

faculties. The preparation of the lecture schedule will

be a big problem if it is done conventionally with a

spreadsheet application.

Lecture schedules must avoid scheduling conflicts

between lecturers, rooms, and lecture participants. It

means that one lecturer may not teach more than one

lecture simultaneously, one room may not be used by

more than one lecture simultaneously, and lecture

participants (students) may not attend more than one

lecture at the same time. In addition, the preparation of

this schedule must also pay attention to certain

limitations set by the university; for example, each

lecturer may not teach more than 6 credits in one day

to obtain maximum quality lectures. Another factor

that underlies this research is how to take advantage of

the limited-lecture rooms available and used by many

study programs.

University Course Timetabling Problem (UCTP) is

one of the widespread problems in combinatorial

optimization, which has a high level of complexity.

UCTP aims to arrange lecture schedules at the

university level by allocating each lecture consisting

of lecturers, students, and courses into a certain space

and time [1] lectures into a certain space and time [1].

UCTP defines constraints as Hard Constraints (HC)

and Soft Constraints (SC). HC is a limitation that is

absolute and cannot be violated. Violation of the HC

results in an invalid resulting solution. While SC is a

compromising constraint, meaning that the limit is not

violated as much as possible, if there is a violation of

the SC, then the resulting solution is still considered

valid.

Experts have widely studied UCTP with various

methods applied, which generally focus on swarm-

based or evolutionary techniques. In [2], it is stated

that UCTP is a combinatorial problem with a very

large solution space, which of course, cannot be solved

efficiently by deterministic algorithms. The search

space is very large, while the deterministic search

method tends to make observations one by one on the

possible solutions in that space. In addition, the

optimal solution of the problem is not only one, but

there are many possible optimal solutions. Therefore,

in [2], it is stated that an evolutionarily more realistic

approach is applied to solve UCTP. Swarm

intelligence-based metaheuristic approaches, such as

Particle Swarm Optimization (PSO), can also be

applied to solve case studies such as UCTP [3, 4].

However, PSO is an optimization method based on

decimal values, while UCTP requires a discrete-based

solution, so PSO requires a discretization mechanism

for each particle to convert decimal values to discrete.

In addition, PSO uses a fairly complex mathematical

model to update the position of each particle in each

iteration/generation.

International Journal of Engineering, Technology and Natural Sciences
E-ISSN: 2685-3191 | P-ISSN: 2775-7706

Vol 3 No 1 (2021)

34

Research in distributed database systems has

popularized the architecture in which the DBMS

(Database Management System) provides an interface

for processing heterogeneous data, and the interface

provides access to data sources [5]. In this context,

data processing using a Query consists of sending a

sub- Query to the data source and then integrating the

results of that sub- Query to produce the final

result. One of the main reasons for the success of

relational database technology is the use of declarative

languages and optimization of the Query process. The

user side determines what data needs to be retrieved,

and the database takes over the task of finding the most

efficient method of retrieving that data. The process is

a Query optimization process to evaluate alternative

methods of running a Query and choose the best

alternative.

Several techniques have been proposed to

enhance traditional Query optimization. These

techniques include better statistics [6], new algorithms

for optimization [7-9], and adaptive architecture for

execution [10]. A particularly promising technique in

this direction is re-optimization, in which the

optimization and execution stages of the

Query processing are inserted, up to several times,

during the run time of the Query [11-14]. Re-

optimizers currently use a reactive approach to re-

optimization; they use traditional optimizers to create

plans, then do statistical tracking, respond to forecast

errors, and generate sub-optimality detected in plans

during execution. Reactive re-optimization is limited

by an optimizer that does not include issues affecting

re-optimization and suffers from several flaws. A

proactive re-optimization approach is used during

optimization to generate a robust plan; it is switchable

and used as a random sample processing for each

Query execution. As a result, it suffers some negative

points [15].

This research presents Query optimization based

on a time scheduling approach to reduce Query re-

optimization. To this end, we added a timer object with

an adaptive Query processing system to address issues

with effect re-optimization. A timer object was created

to execute a predefined set of simple Queries in a

predefined schedule to collect statistical estimates

about the database quickly, accurately, and efficiently

at runtime. When the timer object fires (multiple

times), it executes a specified set of simple Query and

the specified amount of time between executions, the

timer object performs the actual query execution. This

pattern of Query work prompted us to conduct

simulation experiments by demonstrating a new

approach to produce significant improvements in

actual Query performance.

II. METHOD

This research uses the query method to optimize

the scheduling process. Optimization refers to the

organization's needs for which a system requirements

analysis and design has been carried out.

A. System Requirements Analysis

In general, the system developed aims to assist the

administration in compiling the lecture schedule,

which has been prepared manually using a spreadsheet

that takes a long time, along with the limited

supporting resources available. The application must

also accommodate special requests from lecturers,

especially external lecturers, who want class schedules

at a certain time. In addition, the application must also

be able to generate a schedule that can be changed

manually by the user/university administration but still

does not cause problems that interfere with the lecture

process.

The amount of lecture data that must be compiled

requires application developers to use models and

resources as optimally as possible. Therefore, the

Spread Insert Algorithm, which is used as an

optimization method, must be adjusted to the

conditions during the research to produce better

performance. In addition, the computing process must

be designed to run in parallel through a multithreading

mechanism so that the use of computer resources is

more optimal to facilitate the process of preparing

lecture schedules.

Based on data collection, the following

requirements are needed in this design, including Data

1). Name and number of Faculties, 2). Name and

Number of Study Programs., 3). Name and number of

theoretical rooms., 4) Name and the number of

practicum rooms., 5). Course data and the number of

classes for each course.

1) Faculty name and number

The number of faculties used was taken from the

Yogyakarta Technological University; there are 4

types.

Figure 1. Faculty

2) Name and Number of Study Programs.

As for the study programs from these faculties,

there are 8. So to schedule it, the concept of generating

is used automatically.

International Journal of Engineering, Technology and Natural Sciences
E-ISSN: 2685-3191 | P-ISSN: 2775-7706

Vol 3 No 1 (2021)

35

Figure 2. Study Program

3) Name and Number of Rooms

The scheduling process uses space with a capacity

of 40 for each room. The number of rooms is 43

classrooms for theory lectures and 11 laboratory

rooms.

Figure 3. Lecture room

B. System Planning

The system design is carried out using the concept

of optimization to get the best schedule. The schedule

will be automatically plotted based on the built Query.

Figure 4. System Planning

The system will generally receive static data input

as master data and dynamic data input as transaction

variables (as in Figure 1). In most cases, distributed

database environments run in unpredictable and

unstable environments. So it is not easy to produce

efficient database query optimization based on the

information available at compile time. The solution to

this problem is to exploit the information available at

the Query runtime and adapt the Query plan to change

environmental conditions during execution. This

section presents an adaptive Query plan re-

optimization technique for dynamically changing

the Query plan at data processing time.

Query optimization based on the scheduling time

approach aims to reduce Query re-optimization. This

approach runs a set of simple predefined Queries

within a predefined scheduling time to collect

approximate statistics about the database quickly,

accurately and efficiently at data processing time.

III. RESULT AND DISCUSSION

This research produces a scheduling model to plot

the courses into the available rooms so that this

research can automatically make a schedule.

A. Making Room

Creating a room is carried out to determine how

many classes are available from the room prepared as

a whole. Physically, the available rooms will be

divided into hours of user sessions to form the rooms'

names. The regular time for one theory room is used

for 12 credits or 6 sessions, divided before recess and

after resting hours every day. The process carried out

is giving a code to each room consisting of days, types

of courses, rooms, and sessions. An example of coding

for each room can be seen in the modelling below from

code 11196.

Figure 5. Space coding sample

1. Days are represented by the numbers 1 =

Monday, 2 = Tuesday, etc.

2. Type symbolizes room 1= Theory, 2=

Practicum.

3. Space is the number of available physical

space codes.

4. The session describes how many sessions

the room is in a day.

International Journal of Engineering, Technology and Natural Sciences
E-ISSN: 2685-3191 | P-ISSN: 2775-7706

Vol 3 No 1 (2021)

36

The code for the new room is written in the

Pseudocode below.
@x=max(roomCode);

@y=1;

While @y<=@x

Begin

 @day=1

 While @day<=6

 begin

 @sesi=1

 While @sesi<=6

 Begin

 @newcode=@day+@jen=(select jns

from room where roomcode=@x)+@roomcode+

 @sesi;

 @sesi=@sesi+1;

 End;

 @day=@day+1;

 End

 @y=@y+1

end

The results of the pseudocode execution will be stored

in a table which will then be changed to be filled with

courses that already have teaching and learning time, as

shown in the following table.

The number of rooms obtained is based on the

following formula calculation:

𝑅𝑡 = (𝑗𝑡 ∗ 𝑠𝑡) ∗ ℎ …1)

r t = Theoretical space

j t = Number of theoretical rooms

s t = Number of theoretical Sessions

h = number of days

If there are 50 theoretical rooms provided, the

number of theoretical rooms will be: (50*6)*6 → 1800

rooms can be used every week.

B. Determine Each Course Session Hours

Determining PBM hours is needed to get a room

and avoid overlapping rooms. The first process that is

carried out is to create a new code in each course which

aims to make it easier to determine the start and finish

hours based on the number of credits for each course.

This new coding process will help speed up the process

of searching for course data based on:

1. This type of subject is theory or practical.

2. It is a subject of the study program and

its faculties.

This process is carried out and makes it easier to

determine study hours; it also determines the number

of courses to be held because one course consists of

several class groups. The new code from the course

will be stored in the following table.

There is a column "new_code", the coding used as

a liaison between the courses and the available rooms.

Here is an explanation of the new code that was formed

The following is the Pseudocode for creating a new

course code.

@x=max(ID);

@urt=1;

While @urt<=@x

Begin

 update MK set

NEW_CODE=CONVERT(varchar(2),jns)+

CONVERT(varchar(2),(right(kode,2)))+

 CONVERT(varchar(2),

(left(kode,1)))+ @prodi where ID=@urt

 @urt=@urt+1;

End

C. Connecting Courses to the Room

The stage of merging courses and rooms is the last

stage to get a schedule that does not overlap, both the

room and the lecturer in charge of each course.:

International Journal of Engineering, Technology and Natural Sciences
E-ISSN: 2685-3191 | P-ISSN: 2775-7706

Vol 3 No 1 (2021)

37

@sesi=1;

while @sesi<=6

begin

 insert into @kls select ROW_NUMBER()

over(order by mk) as nom,mk, msk,sls,

ke,0 from jadual where ke=@sesi and

ruang='0'

 set @urt=1;

 while @urt<=(select COUNT(nom) from

@kls)

 begin

 set @mk=(select mk from @kls where

nom=@urt);

 set @kelas=right(@mk,4);

 set @adakelas=(select top 1

RIGHT(mk,4) from jadual where ke=@sesi

and

RIGHT(mk,4)=@kelas);

 set @mulai=(select msk from @kls

where nom=@urt)

 set @sls=(select sls from @kls where

nom=@urt)

 set @ada=(select distinct case when

RIGHT(mk,4) = null then '0' else

RIGHT(mk,4) end as v from jadual

 where ke=@sesi and

RIGHT(mk,4)=@kelas);

 set @ruang=(select top 1 ruang from

detruang where left(ruang,4) in

 (select left(ruang,4)

from jadual where left(ruang,4) in

 (select left(ruang,4) from

jadual where ruang<>0 group by

left(ruang,4),sls

having((MAX(RIGHT(ruang,1))=@sesi-1) and

(sls<@mulai))) and sls<@mulai and

SUBSTRING(ruang,2,1)=LEFT(@mk,1)) and

LEFT(ruang,1)>(select

max(LEFT(ruang,1))from jadual

 where

RIGHT(mk,4)=@kelas and ke=@sesi)

 and ruang not in (select

ruang from jadual) order by ruang asc)

 if @ruang is null

 set @ruang=(select top 1 ruang from

detRUANG where RIGHT(ruang,1)=@sesi and

SUBSTRING(ruang,2,1)=LEFT(@mk,1)

 and left(ruang,4) not in

(select left(ruang,4) from jadual)

 and

LEFT(ruang,1)>(select

max(LEFT(ruang,1))from jadual where

RIGHT(mk,4)=@kelas and ke=@sesi)

 and ruang not in (select

ruang from jadual) order by ruang asc)

 if @ruang is null set @ruang=0 else

set @ruang=@ruang;

 update jadual set ruang=@ruang where

mk=@mk

 set @urt=@urt+1;

 end;

 set @sesi=@sesi+1;

 end;

The above process will produce data that is entered

into a table as follows:

IV. CONCLUSION

The experiments show that the scheduling results

can plot all the lecturers according to the rules. The

application of query optimization can make scheduling

optimally, where the plotted schedule does not

conflict. In addition, this query optimization can

provide unique coding for each schedule so that the

schedule is more effective and efficient in its design.

V. REFERENCES

[1] H. Babaei, J. Karimpour, A. Hadidi, “A Survey of Approaches

for University Course Timetabling Problems”, in Computers

and Industrial Engineering, vol. 86, pp. 43 – 59, 2015.

[2] J. Pandey, AK Sharma, “Survey on University Timetabling

Problem”, in Proceedings of 3rd Int'l Conf. on Computing for

Sustainable Global Development, New Delhi, India, 2016,

pp. 160 – 164.

[3] SFH Irene, S. Deris, SZ Mohd. Hasyim, “A Combination of

PSO and Local Search in University Timetabling Problem”,

2009 Int'l Conference on Computer Engineering and

Technology, Singapore, Singapore, pp. 492 – 495.

[4] SI Hossain, MAH Akhand, MIR Shuvo, N. Siddique, H. Adeli,

"Optimization of University Course Scheduling Problem using

Particle Swarm Optimization with Selective Search", Expert

Systems with Applications, vol. 127, pp. 9 – 24, 2019.

[5] T. Ozsu and P. Valduriez. "Principles of Distributed Database

Systems". 2nd Edition. Prentice-Hall, 1999.

[6] V. Poosala, E. Ioannidis, J. Haas, and J. Shekita. "Improved

Histograms for Selectivity Estimation of Range Predicates". In

Proc. of the 1996 ACM SIGMOD Intl. Conf. on Management

of Data, pages 294–305 June 1996.

[7] F. Chu, J. Halpern, and P. Seshadri. "Least Expected Cost

Query Optimization: An Exercise in Utility". In Proc. of the

1999 ACM Symp. on the Principles of Database Systems,

pages 138–147, May 1999.

[8] A. Hulgeri and S. Sudarshan. " AniPQO: Almost nonintrusive

parametric Query optimization for nonlinear cost functions ".

In Proc. of the 2003 Intl. Conf. on Very Large Data Bases,

pages 766–777, Aug. 2003.

[9] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis. "Parametric query

optimization". In Proc. of the 1992 Intl. Conf. on Very Large

Data Bases, pages 103–114, Aug. 1992.

[10] R. Avnur and J. Hellerstein. "Eddies: Continuously Adaptive

Query Processing". In Proc. of the 2000 ACM SIGMOD Intl.

Conf. on Management of Data, pages 261– 272, May 2000.

[11] Z. Ives, A. Halevy, and D. Weld. " Adapting to source

properties in processing data integration queries ". In Proc. of

International Journal of Engineering, Technology and Natural Sciences
E-ISSN: 2685-3191 | P-ISSN: 2775-7706

Vol 3 No 1 (2021)

38

the 2004 ACM SIGMOD Intl. Conf. on Management of Data,

pages 395 – 406, June 2004.

[12] N. Kabra and D. DeWitt. "Efficient Mid-Query ReOptimization

of Sub-Optimal Query Execution Plans". In Proc. of the 1998

ACM SIGMOD Intl. Conf. on Management of Data, pages

106–117, June 1998.

[13] V. Markl, V. Raman, D. Simmen, G. Lohman, and H. Pirahesh.

"Robust Query processing through progressive optimization".

In Proc. of the 2004 ACM SIGMOD Intl. Conf. on

Management of Data, pages 659–670, June 2004.

[14] T. Urhan, M. Franklin, and L. Amsaleg. "Cost-Based Query

Scrambling for Initial Delays". In Proc. of the 1998 ACM

SIGMOD Intl. Conf. on Management of Data, pages 130–141,

June 1998.

[15] S. Babu, P. Bizarro, D. DeWitt. "Proactive Re-

Optimization". SIGMOD 2005, Baltimore, Maryland, USA,

June 14-16, 2005

