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Abstract

In this paper, we present a new hybrid conjugating gradient strategy that is both efficient and effective for solving
unconstrained optimization problems. The parameter 8, is derived from a convex combination of the g4* and the
BER conjugating gradient methods. We demonstrated that this strategy is globally convergent under strong Wolfe
line search conditions, and that the recommended hybrid CG method can create a descending search direction at
each iteration. Numerical results are presented in this study, demonstrating that the proposed technique is both
efficient and promising.
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Introduction:

Let’s assume we’ve got a function f: R™ — R which is continuously differentiable. Now let’s consider the following
unconstrained optimization problem
Min{f(x):x € R"} (D

Where R™ denotes an n-dimensional Euclidean space.

In order to solve Eq (1), we should start with an initial guess x, € R™, then we use a nonlinear conjugating gradient
method to generate a sequence {x,} such as

Xp+1 = X + Qdy 2
where a;, > 0 is achieved by line search and the direction d,, are generated as

_ —IKk k =0
dx) = {_gk + Brdi-1, k>0

(3)

where g, =V f(x) and B, is ascalar parameter, which characterizes conjugating gradient methods.

Computing for the step-sizea, is said to satisfy any of the line search condition. In this paper we use the strong
Wolfe line search.

f(xk + akdk) < f(JC) + (S‘a’kg,fdk , 0<6<

N =

|dig (e + ardi)| < —ogidy, §<o<1 @)
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where d, is the search direction which is clearly defined in Eq (3) .

For many years, researchers focused on the CG techniques. The outcome of those studies is several formulae with
differences in CG coefficient (B,) to solve unconstrained optimization problems.

Some common formula for g, can be defined as:

T
BIR = kxifki1 - ER (Fletcher-Reeves) [1]

9k gk
gEiy e
PR — SkpaVk , PR (Polak-Ribiere) [2]
99k
DY _ gl’ggk i-
i3 = , DY (Dai-Yuan) [3]
Ag_1Yk-1
_ng -
0 = —ZkIk_ - CD (conjugate descent) [4]
di_19k-1
T
Ls — “GkVi-1 , LS (Liu-Storey) [5]
dk__1gk—1
ary ;
HS = JkZk=1 - HS (Hestenes-Stiefel) [6]
dk_lyk—l

where yx_1 = gk — gx—1 » and ||. || means the Euclidean norm. (5)

As we known that the CG methods £ %, BEP and BPY have strongly global convergence properties, however, they
have less computational performance. On the other hand, even though the BER, BES and S5 methods haven‘t shown
convergent all the time, however, they often give better computational performance.

In most cases, hybrid conjugating gradient methods are more efficient than basic conjugating gradient methods.

The hybrid conjugating gradient techniques discussed in this study are of particular importance. These algorithms
are a mixture of different conjugating gradient techniques.

The primary concept behind their strategy is to make advantage of projections. They are commonly advocated as a

way to avoid jamming. We proposed a new hybrid CG method which depends on BA; and FR methods, where the

parameter B and BER are

T T
BFR _ Ik+19k+1 BA1 _ YiJYk [7]
= T P T T
i 9k g9k

to solve the unconstrained optimization problems with suitable conditions.

The parameter B, in our proposed method is computed as a convex combination of BER and ﬁ,fAl such that

BEME = (1 -0 )B" + 6,BEF
(6)

The remainder of the paper is formatted as follows: We present our proposed strategy for acquiring the parameter 6,
utilizing several methods in section 2. The sufficient descent property of our approach is also tested under certain
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conditions. Section 3 comprises numerous assumptions, whereas section 4 establishes the global convergence of the
proposed approach. Section 5 summarizes the results of the numerical experiments that were conducted.

2_THE NEW HYBRID CONJUGATING GRADIENT METHOD

2.1 Derivation of the new parameter 6,.:The recurrence is used to calculate the iterates x,, x4, x5, ... ... of our
algorithm (2). The step size a;, > 0 is determined by the strong Wolfe conditions (4), and the directions are
generated by the rule [8]

do = —9o }
(DA
{dk+1 = —Gi+1 + BMPdy,
Where 0 < 6, <1
BEME = (1— 0,08, ™ + 0, BER (7)B
Vi Yk Gkr19k+1
BHME = (1 —,) +0
* “—dlge " glgx
d =—yg +(1 -6 ) y}?Yk d, +6 g£+1gk+1d
k+1 k+1 ) ZaT g, Fx k—gggk Kk
T T )’IT;Yk T QITcw Ik+1 .. T
Vi di+1= —YVieGr+1 +(1 — 6;) Zalgy Vi di + 6 ;i—gk}’k dy
Hence, from the conjugacy condition yldy.; =0 [9]
T y}’{yk T g£+1gk+1 T
weget 0= —yi g+ + (1= 0) 7 ~Viedi + O =7y dic
K9k IkI9k
T
[y;f i1 kak] yTdy
0. — yede  digk
K=T.T T
YJVe | k+19k+1 Tq
qT + T Yk 9k
k8k 8k 8k
or
YkIk+1 YiVk
0, = yidy dfgg (®)
K [yEyk_l_ngng]
dfex  efex
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We see that when 6, = 0 then B£/2 = g1 and when ), = 1 then ™ reduced to the second part £, On the
other hand, if 0 < 6, < 1, then 8™ is a convex combination of 2" and BER

2.2 The New Algorithm

Stepl: initialization select x, € R™ and the parameters 0 < § < g < 1, compute f(x,) and g,. Consider

1

whenn=0
llgoll

dy = —goand set oy =

Step2: The stopping criterion i.e. ||gx|l < 107° then stop.

Step3: line search compute a;, = aj_4 ”ﬁ’;‘ﬁ”, the step size must a;, > 0 and satisfy the strong Wolfe line search
k

condition (4) .

Step4: Calculate 8, as in (8) with 0 < 6, < 1, then compute B}
conjugate gradient parameter as in (7)B.
Step5:Generate dy; = —gk+1 + Bidy, , and update the variables x,,; = x, + a;dy.
Compute f(Xg+1) » Gr+1 @A Sk = X1 — X, Vi = Gr+1 — G-
Step6: If the restart criteria of Powell | g7, gx| = 0.2||gi+1||? is satisfied, then set dj = —gy41
Otherwise put dj, ., = dj

Step7: set k = k + 1 and continue with step2.

3_THE DESCENT PROPERTY
Hypothesis H

H1: The objective function f(x) is a continuously differentiable function, which means it can be decomposed into
two parts.

The level set L; ={x € R™: f(x) < f(x;)} at x,is bounded (x; is the initail point), namely, there exists a constant
a > 0 such that

llx|l £a forallx € Ly

H,: Inevery neighborhood N of L1, fis continuously differentiable, and its gradient g(x) is Lipschitz continuous
with Lipschitz constant L>0, i.e., f is continuously differentiable in any neighborhood N of L.

IWVfe) =V <Lllx—ylforallx,y € N [10]
Lemma 1.

Let’s assume that the goal function meets the requirements of assumption H. Take an example procedure (2). (3)
The following is true when a; is satisfied by the strong Wolfe line search (4) and B is satisfying the formula (6).
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gF1dis <0 forall k

Proof:
For k = 1 we have gTd, = —gTg, = —||g1]|*> < 0 according to d; = —g,

For k > 1, suppose that g7 d, < 0, holds at the k — th step i.e.: gfd, = —c||g1||*> < 0, then we prove this
inequality also holds at the (k + 1) — th step. Multiply (7)a by g7, we get |gZF,dyl

T T
Gk+1dies1 = ~Gkr1Gierr + (1 — 9k)_y;—£iq"k i1 dic + Hk% Gi+19
div19k41 = —Gis19k41 + % di Gs1 = 91{% di Grs1 + Qk% di Gr+1
S (Gr+1 — g_k()i;;gkk+1 - gi) AT Gorr — On (Gr+1 — g_k;;;;gkk+1 = gi) A7 G
+ Ok % k Gi+1
= — llgr+1lI> + % die i1 — 2 {k;’gj: dicGrr1 + % dicGrr1 — Ok % i Gic+1
+ 26 i%ig: dic 1 — Ok !ZZE{ dicGrer1 + Ok ”g’:{;k” i Gic+1
_ 2 lgrsll T IJk+19k 7 lgil? T lgic+al T
= = lgr+1ll* — g dieGr+1 + 2 dr dieGr+1 g dieGr+1 + Ok g dieGr+1
— 26 gg%;ik di G+ + Ok L‘%Lg”: dicGi+1 + Ok % diGr+1

ogidi < gh1dix < —0 grdy

Iri19k < —Wllgrsall? [11]

T 2 lgics1ll? T g1l T g l? T
Ar+19k+1 < — N Gr4all® + GdT—gk drgi + 200 dT—gk dpgr + o AT gn di gk
k k k
lgr+111 llgk+111? Il g II?
-0 = dlg. -2 0, ————— d¥fg, — 0 dl
kO AT gr k9k — 200 O AT gr k9k — 00 AT gr k9K
|ng+1I|2
— 6,0 22 Ty
k glzgk ek
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lgill®
dir19k+1 < =l gr+1 1> + ollgies1l1? + 200l grsa 1* + 0_”gk E
+1
lgicll®
— 20U Oxllgr+1I* — Oxo 2
lgr+all

IA

T
dgy19K+1

IA

T
diy19K41

c 00
1—0‘—20’1|J—W+0'9k+20'l|19k+ﬁﬂ—60'9k

—Cillgr+1 1|2

grdy < —cllgill?

k k

0<(C; <1

Ci= [1—0—20111—/3%+66k+20¢0k +%_CGHR]

4-Global convergence.

Theorem 4.1.

||£lk+1||2 - 9k0||gk+1||2

lgx+1l1* + cobllgr+111?

] gic+all?

Let’s suppose that the assumption H; and H, holds. Consider the algorithm (2),(7),(8) where 0 < 6, < 1 and a;, >
0 is obtained by the strong Wolfe line search.

2 2
. . >
If ||sk || tends to zero and there exists non-negative constant Th and 12 such that ”gk” 771”Sk ” ;

LAY

and f is uniformly convex function, then Ilim g =0

Lemma 4.1:

If the assumptions H, and H, are true, we may examine any conjugating gradient (2) or (3), where d, is the descent
direction and a;, > 0 is the result of a strong Wolfe line searching to determine the gradient. If

Proof:

1
—< @ then
Liz1 lldje 1112

Lminfllgell =0 [12]

BEME = (1 - 6,)B5" + 6,BER

T T
ﬁIIC.IMB — (1 _ ek) Vi Yk Ik+19k+1

46
—dlg, ° gigk
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llell? 4 ll g+ I?

’Ic-IMB
_dzgk lgll?
From [[ye |l < L|ISkll
NSl gl
cllgll? lgrI?
s L?||S,|I? L ISkl
T oemISkll® T me lISkll?
HMB Lzllsk” 2
T emlISell T ma lISkll
The new direction
dis1 = —Grks1 + PP
disill = I=gis1 + BEM? dill < Ngiesr | + 1BEE 1Nl diel

dics1llI? = 1grsall? + 288" g Nl 1| + (B™MP)2 I dicll?

US| _me | IS
k

< S|+ 2
2 15l [cnlnsku sl ™ ]

[LZIISkII ] 1Sk II?
cnall Sl ThIISkII lage|?

From ||S¢ ]l <D

7D2 [LZD nz]z 1
ol cny Nl lagl?

<n,D +2[i]1 + ”2] 1,2

1 DZ L?D N2 It

leto=n, D +2[22 + 22| 4 [E2 4 Iz
N1 Ia | cny il lagl?

”dk+1”2 <0

1
RS EOREEES
k>1”dk+1” ¢ o (0]

 lim infllgil = 0
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5-Numerical

In this section, we’ll discuss the results of our numerical experiments with the hybrid MB algorithm and compare
them to the numerical results of the other two algorithms (FR, BAL) under the strong Wolfe line search, which is
based on number of iterations (NI) and number of function evaluation (NF),

with iterations ending when || g, || < 107°.

In addition, when the number of variables (n=200,900) was high, we used 75 functions of unconstrained
optimization problems. All the graphs in this study were created in Fortran.

The results are shown in Table 1.

TABLE 1. list numerical result details.

HMB FR BAL

Function The dimension NI NF NI NF NI NF

200 22 39 23 39 33 58

Extended Trigonometric
900 31 57 36 60 48 83
200 35 78 38 80 75 143
Extended Rosenbrock
900 35 78 40 86 1001 1513
200 36 80 40 85 53 103
Extended White &Holst
900 29 57 39 82 1001 1539
200 14 27 16 30 34 68
Extended Beale

900 14 27 15 28 30 64

200 123 191 1001 | 1075 647 995
Raydan 1

900 403 689 468 817 1001 1560

200 4 9 4 9 4 9
Raydan 2

900 4 9 4 9 4 9

200 96 158 99 166 434 678

Diagonal 12
900 197 320 209 351 1001 1515
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HMB FR BAL
Function The dimension NI NF NI NF NI NF
200 51 76 52 76 76 129
Generalized Tridiagonal 2
900 58 93 64 104 93 160
200 10 19 10 19 42 81
Extended Himmelblau
900 11 21 22 35 28 50
200 7 15 7 15 26 151
Extended pscl
900 7 15 7 15 11 27
200 70 128 80 147 1001 1503
Extended powell
900 80 150 90 169 1001 1531
200 69 164 70 149 1001 1120
Extended Maratos
900 76 180 101 402 166 572
200 24 47 25 49 236 454
Extended Wood
900 25 49 28 54 1001 1522
200 79 174 90 195 106 231
Extended Hiepert
900 79 171 86 184 114 244
200 23 427 100 | 3016 69 2007
Extended Quadratic penalty Qpl
900 8 21 8 21 45 626
200 157 250 163 256 747 1142
Quadratic Qf 2
900 368 573 1001 | 1203 1001 1501
200 35 54 35 53 55 95
Extended Tridiagonal 2
900 47 69 61 635 57 105
200 8 15 8 15 1001 1030
ARWHEAD
900 14 85 20 247 69 804
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HMB FR BAL
Function The dimension NI NF NI NF NI NF
200 11 21 15 30 27 55
NONDIA
900 13 26 17 33 18 38
200 7 14 7 14 7 14
DIXMAANA
900 7 14 7 14 13 27
200 13 23 13 23 17 32
DIXMAANC
900 14 25 14 25 16 64
200 127 203 161 254 1001 | 1515
Tridiagonal perturbed Quadratic
900 285 450 338 515 1001 | 1513
200 25 46 25 48 1001 | 1028
EDENSCH
900 38 385 85 1738 | 1001 | 1037
200 16 36 19 40 1001 | 1509
LIARWHD
900 19 44 21 45 1001 | 1513
200 77 1506 73 1581 205 5420
ENGVAL1
900 26 281 147 | 4029 147 3430
200 9 16 11 19 25 46
Extended DENCHNA
900 19 31 22 36 26 50
200 7 15 7 15 20 39
Extended DENCHNB
900 7 15 7 15 10 21
200 11 20 12 23 41 70
Extended Block-Diagonal
900 10 19 11 21 40 69
200 7 18 7 18 20 42
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HMB FR BAL

Function The dimension NI NF NI NF NI NF
Generalized quartic GQ1 900 7 18 7 18 10 24
200 7 15 7 15 26 151

SINCOS
900 7 15 7 15 11 27
200 21 45 22 47 37 67

FLETCHCR
900 27 54 28 54 47 82
200 6 13 6 13 19 37
Extended Himmelblau

900 6 13 6 13 15 29

The percentage of improvement is shown in both tables 2-3

Table 2

Table 3:
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Figure 2: Based on NI 900
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Figure 4: Based on NF 900
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The statistics above show a comparison of the new algorithm MB with both FR and BA1 in terms of NI, NF. Dolan
and More [13] is utilized to demonstrate the outcomes of a newly developed hybrid conjugate gradient algorithm.
As a result, we can deduce that the hybrid method is effective.

6-Conclusion:

Based on the hybridization of the two algorithms (ﬁ,f“‘1 and BER), a new approach termed was introduced in this

research for hybrid conjugating gradient in unconstrained optimization.

The qualities of sufficient descent and global convergence of the suggested algorithm have been confirmed by some
of the assumptions employed, and the proposed method has been explored both theoretically and practically.

References

[1] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J., vol. 7, no. 2, pp.
149-154, 1964.

[2] E. Polak and G. Ribiere, “Note sur la convergence de méthodes de directions conjuguées,” ESAIM Math.
Model. Numer. Anal. Mathématique Anal. Numérique, vol. 3, no. R1, pp. 3543, 1969.

[3] Y.-H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with a strong global convergence
property,” SIAM J. Optim., vol. 10, no. 1, pp. 177-182, 1999.

[4] R. Fletcher, Practical methods of optimization. John Wiley \& Sons, 2013.

[5] Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms, part 1: theory,” J. Optim. Theory
Appl., vol. 69, no. 1, pp. 129-137, 1991.

[6] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving,” J. Res. Natl. Bur. Stand.
(1934)., vol. 49, no. 6, p. 409, 1952.

[7] A. Y. Al-Bayati and N. H. Al-Assady, “Conjugate gradient method,” Tech. Res. Sch. Comput. Stud. Leeds
Univ., 1986.

[8] N. Andrei and others, Nonlinear conjugate gradient methods for unconstrained optimization. Springer,
2020.

[9] N. Andrei, “Hybrid conjugate gradient algorithm for unconstrained optimization,” J. Optim. Theory Appl.,
vol. 141, no. 2, pp. 249-264, 2009.

[10] F. N. Al-Namat and G. M. Al-Naemi, “Global convergence property with inexact line search for a new
hybrid conjugate gradient method,” Open Access Libr. J., vol. 7, no. 2, pp. 1-14, 2020.

[11]  A. Y. Al-Bayati and M. S. Jameel, “New Scaled Proposed formulas For Conjugate Gradient Methods in
Unconstrained Optimization,” AL-Rafidain J. Comput. Sci. Math., vol. 11, no. 2, pp. 25-46, 2014.

[12] Y. H Daiand L. Z Liao, “New conjugacy conditions and related nonlinear conjugate gradient methods,”
Appl. Math. Optim., vol. 43, no. 1, pp. 87-101, 2001.

[13] E.D. Dolan and J. J. Mor¢, “Benchmarking optimization software with performance profiles,” Math.
Program., vol. 91, no. 2, pp. 201-213, 2002.

94



