RADIO FREQUENCY IDENTIFICATION AND IMAGE-BASED FACIAL IDENTIFICATION AS AN EMPLOYEE ATTENDANCE SYSTEM

Main Article Content

Raden Andy Kurniawan
Umar Zaky

Abstract

The current development of microcontroller technology can be used to build a presence system for employees. The employee attendance system uses radio frequency identification and facial identification which is designed and built to make it easier to do attendance data recording, so that the data obtained can be precise and accurate. Data collection techniques, namely by interview and observation. The application development process uses the PHP and Python programming languages ​​with Visual Studio Code software applications, Arduino Uno, MySQL software as a database server, and XAMPP as a support. The input used in this system is the employee's personal data and the results of employee face data retrieval which are stored in the .jpg format. The faces taken were taken from 4 people where each face was taken 20 face samples. The results are in the form of web and applications that will provide solutions to existing problems. The conclusion of this application makes it easy to do the recording and attendance, and minimize the fraud committed by employees. Retrieval of face data was taken as much as 20 data with the highest level of accuracy was 87% when the presence test was carried out.

Article Details

Section
Articles

References

[1]Aminah, S.O. (2015), Sistem Informasi Kepegawaian (Studi Kasus: PT Makmur Sexali), Skripsi, S.Pd., Pendidikan T. Informatika Universitas Kepingin Negeri, .
[2]Asfi dan Sari (2010), Sistem Penunjang Keputusan Seleksi Mahasiswa Berprestasi Menggunakan Metode AHP, Skripsi, S.Kom., Universitas Teknologi Yogyakarta.
[3]Dalal, N., and Triggs, B. (2005), Histograms of Oriented Gradients for human detection in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR 2005), San Diego. CA. N.
[4]Hermawan, A.M. (2015), Perancangan Sistem Basis Data, Jakarta: Elex media Komputindo.
[5]Kadir, A. (2013), Pengantar Teknologi Informasi, Yogyakarta: ANDI Publisher.
[6]Cristianini, N., Taylor, J.S. (2000), An Introduction to Support Vector Machine and Other Kernel-Based Learning Methods, Cambridge Press University.
[7]Maulana (2012), Penilaian Kinerja Karyawan Di Ifun Jaya Textile Dengan Metode Fuzzy Simple Additive Weighted, Tugas Akhir, S.Kom., STMIK AMIKOM Yogykarta.
[8]Mustakini, J.H. (2006), Analisis Dan Desain Sistem Informasi: Pendekatan Terstruktur Teori Dan Praktek Aplikasi Bisnis, Yogyakarta: ANDI Publisher.
[9]Mustakini, J.H. (2016), Analisa Dan Perancangan Sistem Modern, Yogyakarta: ANDI Publisher.
[10]Mustakini, J.H. dan Kusumo, M.J. (2016), Analisis Dan Perancangan Sistem Modern, Yogyakarta: ANDI Publisher.
[11]Oetomo, B.S.D. (2003), Sistem Basis Data: Analisis Dan Pemodelan Data, Yogyakarta: Graha Ilmu.
[12]Prahasta, E. (2002), Konsep-Konsep Dasar Sistem Informasi Geografis, Bandung: Informatika.
[13]Sampurna, J. dan Malik, A. (2014), Sistem Pendukung Keputusan, Jakarta: Elex media Komputindo.
[14]Sutarman (2012), Pengantar Teknologi Informasi, Jakarta: Bumi Aksara.