Analysis of Liquefaction Potential Based on SPT and CPT Data in the Yogyakarta International Airport Area

  • Abul Fida Ismaili Universitas Teknologi Yogyakarta
  • Adwiyah Asyifa civil engineering
Keywords: Standar Penentration Test (SPT ), Cone Penetration Test (CPT), Cyclic Resistance Ratio (CRR), Cyclic Stress Ratio (CSR), Liquefaction

Abstract

The occurrence of earthquakes will cause damage to building structures as well as damage to soil structures. One of the impacts is Liquefaction, which is a process or event of changing the state of the soil from a solid state to a liquid state caused by a cyclic load at the time of the earthquake so that there is a change in the voltage in the soil. Analysis method of potential liquefaction using simplified method, based on SPT and CPT data.  From the data, cyclic stress ratio (CSR), Cyclic Resistant Ratio (CRR) and security factors were obtained. Based on the calculation analysis, it is known that there is a potential liquefaction in YIA  area with different depth variations according to the location of data retrieval with an earthquake magnitude of 7.5 SR.

References

Amelia, R., & I gede Budi Indrawan. (2017). Penyelidikan geologi teknik lokasi bandara baru di daerah istimewa yogyakarta. Proceeding Seminar Nasional Kebumian, 1(September). https://repository.ugm.ac.id/274104/1/OHT-03.pdf

Bolton, S. I. M. I. I. A. (1983). EVALUATION OF LIQUEFACTION POTENTIAL USING FIELD PERFORMANCE DATA. Geotechnical Engineering, 109(3), 458–482.

Idriss, I. M., & Boulanger, R. W. (2008). Soil Liquefaction During Earthquake. In D. Becker (Ed.), Earthquake Engineering Research Institute (Vol. 12). Earthquake Engineering Research Institute. https://doi.org/10.1109/MIA.2007.322261

Ikhsan, R. (2011). Anlisis Potensi Likuifaksi dari Data CPT dan SPT dengan Studi Kasus PLTU Ende Nusa Tenggara Timur. Universitas Indonesia.

Iswanto, E. R., Syaeful, H., & Sriyana. (2017). Analisis Potensi Likuifaksi di Tapak Reaktor Daya Eksperimental Serpong. Prosiding Seminar Nasional Teknologi Energi Nuklir, 261–269.

Kongar, I., Rossetto, T., & Giovinazzi, S. (2017). Evaluating simplified methods for liquefaction assessment for loss estimation. Natural Hazards and Earth System Sciences, 17(5), 781–800. https://doi.org/10.5194/nhess-17-781-2017

Robertson, P., & Campanella, R. (1985). Liquefaction Potential of Sands Using the CPT. Journal of Geotechnical Engineering, 111, 384–403. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384)

Youd T, L., M., I. I., D., A. R., Ignacio, A., Gonzalo, C., T., C. J., Richardo, D., Liam, F. W. D., F., H. L., Ellen, H. M., Kenji, I., P., K. J., C., L. S. S., F., M. W., R., M. G., K., M. J., Yoshiharu, M., S., P. M., K., R. P., … H., S. K. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)

Submitted
2022-09-23
Accepted
2022-12-30
How to Cite
Abul Fida Ismaili, & Asyifa, A. (2022). Analysis of Liquefaction Potential Based on SPT and CPT Data in the Yogyakarta International Airport Area. International Journal of Engineering Technology and Natural Sciences, 4(2), 158 - 164. https://doi.org/10.46923/ijets.v4i2.187